Wild-type and molten globular chorismate mutase achieve comparable catalytic rates using very different enthalpy/entropy compensations

نویسنده

  • HU Hao
چکیده

The origin of the catalytic power of enzymes with a meta-stable native state, e.g. molten globular state, is an unsolved challenging issue in biochemistry. To help understand the possible differences between this special class of enzymes and the typical ones, we report here computer simulations of the catalysis of both the well-folded wild-type and the molten globular mutant of chorismate mutase. Using the ab initio quantum mechanical/molecular mechanical minimum free-energy path method, we determined the height of reaction barriers that are in good agreement with experimental measurements. Enzyme-substrate interactions were analyzed in detail to identify factors contributing to catalysis. Computed angular order parameters of backbone N–H bonds and side-chain methyl groups suggested site-specific, non-uniform rigidity changes of the enzymes during catalysis. The change of conformational entropy from the ground state to the transition state revealed distinctly contrasting entropy/enthalpy compensations in the dimeric wild-type enzyme and its molten globular monomeric variant. A unique catalytic strategy was suggested for enzymes that are natively molten globules: some may possess large conformational flexibility to provide strong electrostatic interactions to stabilize the transition state of the substrate and compensate for the entropy loss in the transition state. The equilibrium conformational dynamics in the reactant state were analyzed to quantify their contributions to the structural transitions enzymes needed to reach the transition states. The results suggest that large-scale conformational dynamics make important catalytic contributions to sampling conformational regions in favor of binding the transition state of substrate.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kinetics and thermodynamics of ligand binding to a molten globular enzyme and its native counterpart.

An engineered monomeric chorismate mutase (mMjCM) has been found to combine high catalytic activity with the characteristics of a molten globule. To gain insight into the dramatic structural changes that accompany binding of a transition-state analog, we examined mMjCM by isothermal calorimetry and compared it with its dimeric parent protein, MjCM (CM from Methanococcus jannaschii), a thermosta...

متن کامل

Computationally designed variants of Escherichia coli chorismate mutase show altered catalytic activity.

Computational protein design methods were used to predict five variants of monofunctional Escherichia coli chorismate mutase expected to maintain catalytic activity. The variants were tested experimentally and three active site mutants exhibited catalytic activity similar to or greater than the wild-type enzyme. One mutant, Ala32Ser, showed increased catalytic efficiency.

متن کامل

Quantum chemical modeling of the reaction path of chorismate mutase based on the experimental substrate/product complex

Chorismate mutase is a well-known model enzyme, catalyzing the Claisen rearrangement of chorismate to prephenate. Recent high-resolution crystal structures along the reaction coordinate of this enzyme enabled computational analyses at unprecedented detail. Using quantum chemical simulations, we investigated how the catalytic reaction mechanism is affected by electrostatic and hydrogen-bond inte...

متن کامل

The Activation Entropy Change in Enzymatic Reaction Catalyzed by Isochorismate-Pyruvate Lyase of Pseudomonas Aeruginosa PchB

The elucidation of entropic contribution to enzyme catalysis has been debated over decades. The recent experimentally measured activation enthalpy and entropy, for chorismate rearrangement reaction in PchB brings up a hotly debated issue whether the chorismate mutase catalyzed reaction is entropy-driven reaction. Extensive configurational sampling combined with quantum mechanics/molecular mecha...

متن کامل

On the relationship between folding and chemical landscapes in enzyme catalysis.

Elucidating the relationship between the folding landscape of enzymes and their catalytic power has been one of the challenges of modern enzymology. The present work explores this issue by using a simplified folding model to generate the free-energy landscape of an enzyme and then to evaluate the activation barriers for the chemical step in different regions of the landscape. This approach is u...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013